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Abstract. It is shown that the investigation of the magnetisation and the susceptibility of 
the finite-volume ferromagnetic Husimi-Temperley model reduces to the study of the 
nonlinear Burgers equation. The thermodynamic limit corresponds to vanishing diffusion 
coefficient and the resulting shock wave to the jump in the spontaneous magnetisation. 
The upper bound on the susceptibility of the finite system derived by the approximating 
Hamiltonian method is compared with the asymptotic form (as N + CO) of the susceptibility 
obtained from the solution of the Burgers equation. 

1. Introduction 

It is well known that phase transitions and spontaneous symmetry breaking may occur 
in the thermodynamic limit only. In the case of finite systems the macroscopic 
observables are smooth (moreover, real analytic) functions of the thermodynamic 
parameters: temperature, external fields, etc. The study of the mechanism of appear- 
ance of thermodynamic singularities is necessary not only for deeper understanding 
of phase transitions, but it can also provide some useful estimates of the diverging 
quantities in the thermodynamic limit as well. Such estimates turn out to be necessary, 
for example, in the proof of certain assertions about model systems (see Volovich e? 
a1 1973, Brankov et a1 1977, 1979). 

The purpose of this paper is to give the detailed description of the phase transition 
in the Ising model with infinitely long range, infinitesimally small interaction, the so 
called Husimi-Temperley model (see Husimi 1953, Temperley 1954). It will be shown 
that the occurrence of a phase transition in the thermodynamic limit is mathematically 
completely analogous to the formation of shock waves in nonlinear dispersive media, 
that is, to a problem extensively studied in nonlinear hydrodynamics (see Whitham 
1974), nonlinear theory of condensed matter (e.g. Dynin 1979), chromatography 
(Yeroshenkova er a1 1980), etc. By making use of this analogy we will obtain the 
asymptotic growth of the susceptibility of a finite system at the critical point with the 
increase of the size of the system and we will compare it with the upper bound found 
by Zagrebnov and Brankov (1973) with the aid of the approximating Hamiltonian 
method. 
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2. Susceptibility of a finite system: an upper bound 

The Hamiltonian of the Husimi-Temperley model for a system of N spins ( s  = k) is 

N 

2N ; . j=  1 i = l  
{a;. = *l} J N  

HN =--  ~ , ~ j - h  ~j 

where the ferromagnetic coupling constant J > 0 and h is an external magnetic field. 
The corresponding approximating Hamiltonian (Brankov 1973) is 

N 
H k ( c ) = -  (cJ+h)ai+INJc'  

i = l  

Here c E R is a trial c-number parameter. From the main theorem of the approximating 
Hamiltonian method (Bogolubov 1972, Bogolubov et a1 1981) it follows that 

0 i d ,  f ~ [ H k  (c)] - ~ N [ H N I  A N ( &  h )  E N ( / %  h ). 
C € R  

Here f N [  ] is the free energy per spin for the corresponding Hamiltonian: 

f N [  I = - ( P N ) - '  In Tr exp[-p( 13, 
/3 is the inverse temperature and e N ( &  h ) + O  as N +CO. 

It is convenient to introduce the operator 

(2 .3 )  

with the aid of which we can write 

where ( ) denotes the thermodynamic average 

( ) = Tr{e-PHN( )}/Tr{e-OHN}. 

Hence for the susceptibility of the finite system we have the upper bound: 

X N ( &  h )  ~ ~ N ( ( S N  - E l 2 )  = ~ P N ( ~ J A . N  - ? a h A N ) .  ( 2 .7 )  

Here E = E ( &  h )  corresponds to the point of absolute minimum of f N [ H L ( C ) ]  with 
respect to c E R' (see (2 .3 ) ) ,  which is actually independent of N .  Since a:fN[HN] 6 0 
we obtain 

a : h N  3 -E2xo(p ,  h )  (2 .8 )  

where x o ( p ,  h )  = ah? is the susceptibility of the approximating system. By making use 
of the equation for the order parameter E we get 

0 s x 0 ( p ,  h )  = ( 1  - E 2 ) / [ @ - '  - J ( l  -?*)IS 3@-'/2J(JE + h)'. (2 .9 )  
Hence 

E 2 x o ( P ,  h ) s 3 / 2 P 2 J 3 ;  (2 .10 )  

therefore, the right-hand side of (2 .8 )  is bounded uniformly in N from below. 
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In order to make use of this result for an upper bound on the susceptibility we 
note first that according to the Griffiiths-Hurst-Sherman inequalities (Griffiiths er a1 
1970) 

X N ( @ ,  h)sX,v(P,  h =o) .  (2.11) 

By virtue of the thermodynamic equivalence of the Hamiltonians HN and H L ( c )  the 
susceptibility xN(P,  h = 0) diverges as N + CO only at the critical point pc = J-’  of the 
approximating system. Since ?(Po 0) = 0 and ld,,ANl= IE -(sN)I s 2, from (2.7) and 
(2.11) we obtain 

(2.12) 0 s X N  (Pc, h )  s X N  ( P c ,  0) s ~ P c N ~ J A N  (Pc, 0). 

Now we recall the following lemma. 

Lemma (Kolmogorov 1939, see also Bogolubov et a1 1981). Let A N ( J )  be a sequence 
of continuously differentiable functions, on the interval 0 = (0, J ) ,  having at any point 
J E [0, J )  second-order derivatives from the right a:AN(J +0) and let 

(i) IAN(J)I F N ( U  + 0 N+CO VJEO 

(ii) d:h,(J + 0) 2 -D(O) > --CO V J  E [O, J ) .  

(2.13) 

In the case under consideration all the conditions of the lemma are satisfied for 
the function AN(pc=J-’, h = O ) = A N ( J )  with EN(O)=EN(J-’,  0) and D(O)=$J (see 
(2.3), (2.8) and (2.11)). Therefore, the bound on the susceptibility takes the form: 

X N ( P ~ ,  ~ ) ~ ~ J - ’ N [ ~ E N ( J - ’ ,  0)/2J]”*. (2.14) 

The approximating Hamiltonian method (Brankov 1973, Bogolubov et a1 1981) gives 
an upper bound on E N ( &  h):  

E N ( @ ,  h )  s 2(/”J)”2N-”2 (2.15) 

which implies the following bound on the susceptibility at the critical point: 

X N  ( Pc, h = 0) s 4JTPcN3/4. (2.16) 

3. The magnetisation of a finite system and the Burgers equation 

The asymptotic behaviour of X N ( &  h )  as N +CO can be obtained by drawing an 
interesting analogy between the phase transition in model (2.1) and the appearance 
of shock waves in some dispersive nonlinear media. Indeed, in the case of the 
Husimi-Temperley model described by Hamiltonian (2.1) the average magnetisation 
per spin 

is a function of two variables: t = p J  and x = -oh. By differentiation of the explicit 
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form of definition (3 .1 )  (see ( 2 . 1 )  and ( 2 . 6 ) )  with respect to t and x one obtains: 

8," =$N((s$)-(s&)(SN)) 

ax" =-N((S;)-(~N)') 

a:mN = N'((S;) - 3(s&)(sN) + 2 ( ~ ~ ) ~ ) .  

Therefore the function " ( t ,  x ) = ( s N )  obeys the Burgers equation (see e.g. Whitham 
1974, ch 4 ) :  

( 3 . 2 )  1 -1 2 a rmN + mNaxmN = TN axmN 

with the initial condition 

"(x, t = 0) = -tanh x .  ( 3 . 2 ~ )  

Equation ( 3 . 2 )  describes the evolution of perturbations in a dispersive medium in 
which the propagation velocity depends linearly on the amplitude and the perturbations 
disperse according to the diffusion law. In our case, the diffusion coefficient is inversely 
proportional to the number of spins and vanishes in the thermodynamic limit. This 
implies that the properties of the solutions of equation (3 .2 ) ,  i.e. the properties of the 
magnetisation, are qualitatively different for finite and infinite systems. The change 
in these properties can be traced explicitly. 

By making use of the Cole-Hopf substitution, equation ( 3 . 2 )  can be solved 
explicitly: 

a: 00 - 1  
x - 7 7  dq t exp[-NG(q ; x, t ) ]  (I d77 exp[-NG(v ; x ,  t )]) 

--oo 
( 3 . 3 )  

(X (X - V I 2  G ( 7  ; X, t )  = jo' dq '  mN (q', t = 0) + - = -In cosh 77 + - 
2r 

* 
2r 

( 3 . 3 )  

Changing from the variable 77 to c = (x - T ) / f  we obtain 

& ( c ;  x, t )  = -In cosh(ct - x )  + i t c2  = pfm(c; h, p )  +In 2 

where 

fm (C ; h, p ) = f~ [H (C ) ] = - p - * 1 n 2 COS h( PJC + Ph ) + ~ J c  ( 3 . 4 )  

is the free energy density for the approximating Hamiltonian (2 .2 ) .  
From ( 3 . 2 )  and (3 .3 )  it follows that with the increase of 'time' t the steepness of 

the solution m N ( x ,  t )  at the point x = 0 increases. For finite t, however, it always 
remains finite due to the presence of diffusion which smooths down the front (see e.g. 
Whitham 1974, ch4).  Since the diffusion coefficient is proportional to N-', the 
situation changes sharply in the thermodynamic limit. The formal passage to the limit 
N + c o  leads to the Burgers equation without a diffusion term. Now, due to the 
nonlinearity, with the increase of 'time' t the steepness of the solution at x = 0, which 
is proportional to the initial susceptibility, can become infinite at finite t = t ,  = p J  
with the subsequent formation of a shock wave, that is the function mm(x, t )  becomes 
discontinuous with respect to x at x = 0 for t > t,. This situation corresponds to the 
appearance of spontaneous magnetisation. 

The above qualitative picture of the occurrence of a phase transition in the 
thermodynamic limit is confirmed in the next section by direct analysis of equation 
(3 .3 )  and the derivative ah" = x N  which equals the susceptibility of the model. 
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4. Susceptibility of the Husimi-Temperley model: asymptotic form as N-, 00 

From (3.3) we see that the steepness of the front of the solution to the Burgers 
equation (3.2) coincides, up to a numeric factor, with the magnetic susceptibility of 
the Husimi-Temperley model 

X N ( P ,  o ) = p N I $ ’ ( p ) / I $ ’ ( p )  (4.1) 

where 

The large-N behaviour of the integrals 1: ( p )  can be obtained with the aid of the 
general theory of Laplace integrals (see e.g. Dingle 1973, Fedoriuk 1977). From the 
relevant theorems it follows that 

(4.3) 

(4.4) 

The point c = E  is determined by the condition for the absolute minimum of function 
(3.4) 

(4.6) 

In the case when fm(c;  0, p )  reaches absolute minimum at more than one point 
(this happens when p >pc =J-’) the right-hand side of (4.4) has to be summed over 
the contributions from each such point. From (4.5) we obtain for c = E :  

fm(E; 0, p )  = m i n f d c ;  0, p) .  

Here the Taylor series expansions of fm(c ; 0, p )  and f k  (c ; 0, p )  about c = E have been 
used under the conditions 

f Z ’ ( E ; O , p ) = O  1 s j s 2 m - 1  f 2 ” ’ ( E ;  0, p )  f 0. (4.8) 

It suffices to consider only the first two terms in the series (4.3), namely those with 
k = O  and k = 1: 

There are three cases to be distinguished. 
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(a) At the critical point. P = Pc = J-’, h = 0. Then from (3.4) and (4.6) we obtain 
E (  pc, 0) = 0 and 

(4.10) 

Therefore, in this case m = 2 (see (4.8)) and 

(4.11) 1 1/4 g(0,O; P C )  = - ~ { & P c f ~ ( 0 ;  0, pc)}-1/4 = -4(12) * 

(4.12) 

(4.13) 

Therefore, the asymptotic expansion (4.3) takes the form 

- ~ - ~ / ~ [ t ( 1 2 ) ~ / ~ r ( ~ ) ~ - ~ / ~ + .  . . I  
(4.14) 

Finally, the asymptotic form of the magnetic susceptibility (4.1) at the critical point 
is (compare with (2.16)) 

(4.15) 

(b) Below the critical point. P >pc, h = 0. In this case, function (3.4) reaches a 

I : ’ ( ~ J  - ~ - ~ / ~ [ ; ( 1 2 ) ~ / ~ r ( ~ ) + ~ ( 1 2 ) ~ / ~ ~ - ~ / ~ + .  . .I. 

x N ( p c ,  o)-J12(r( t ) /r(!))PcN1/2 = 1.17083 . . . p c ~ ?  

minimum at two points: c = *IEI.  Now 

P ~ $ ( c ;  O , p ) ~ , = ~ ~ ~ , = ~ J ( l - ~ J / c o ~ h ~ ~ J C ) # 0  

and m = 1 in (4.3)-(4.8). Therefore 

(4.16) 

Hence, we have 

a b “ ( @ )  = -2r(;)&(~, E ;  p )  ab2’(p) = - ~ I - ( ; ) ~ ( E ,  E ;  pj. (4.17) 

As the contributions in (4.4) of both points of minimum c = * lEl  are equal, as follows 
from (4.16) and (4.17), from (4.1)-(4.5) we obtain for N + C O :  

X N ( P 1  0) -PEZN P ’ P c .  (4.18) 
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(c) Above the critical point. P < Pc, h = 0. There is a unique point C = 0 of the 
minimum of function (3.4) and 

p f ~ ( o ; o , p ) = p J ( l - p J ) > o .  

g(0,O; p )  = -[2PJ(l  -pJ)]-l'*. 

ab1'( p )  = 0 

cp1(0; P I  = c p ;  (0; P I  = 0 

u : ' ) ( P )  = -4r(5)Cp;(o; p)g3(0, 0; P I  

X N ( P ,  OI-Pl(1 - P J )  = x m ( P ,  0) 

Therefore m = 1 in (4 .3H4.8)  and 

Now from (4.4) we have 

ab2)(p)  = -2r(;)g(o, 0; pi .  

Cp;(O;p)=2pJ. 

Since ab ' ) (@)  = 0 it is necessary to find u i ' ) ( P ) ,  but (see (4.2)) 

Therefore 

and the asymptotic form of the susceptibility in this case is 

P < P C .  (4.19) 

5. Concluding remarks 

First we note that the results of the preceding section agree with the predictions of 
S; 3. Indeed, for small 'times' t < t, the evolution of the initial condition (3.20) in the 
nonlinear medium described by equation (3.2) is such that the steepness of the front 
at x = 0 is finite, including the limiting case N + 03. At the moment t = t ,  the steepness 
at x = 0 increases to infinity with N + CO, i.e. with the decrease to zero of the diffusion 
coefficient. Further, in the limit of vanishing diffusion, the formation of a shock wave 
takes place for t > tc, which corresponds to the jump in the spontaneous magnetisation 
with the change of the magnetic field ( x  = -@h) across the point x = 0. We should 
note that in this case the quantity (4.18) is not the initial magnetic susceptibility of 
the Husimi-Temperley system, since the tatter is defined as 

x d P ,  h = O ) =  lim+ lim ,yN(P, h ) .  
h - 0  N-m 

This quantity, in contrast to (4.181, is finite for P >/3, and coincides with the susceptibil- 
i ty defined by the approximating Hamiltonian method (Bogolubov et a1 1981). 
Definition (5.1), or the analogous one for h + O - ,  physically reflects the fact that the 
limiting Gibbs distribution, which is concentrated at the points *IC( P,  O)l, is non- 
ergodic and only one of its ergodic components should be selected. 

In conclusion we mention that the comparison of the asymptotic form (4.15) and 
the upper bound (2.16) indicates that the latter is a large overestimation. Since (2.16) 
follows from (2.14) and (2.15), the upper bound on the susceptibility can be improved 
by improving the bound (2.3). For example, the Laplace method (see Moschchinsky 
and Fedyanin 1977) or the direct evaluation of the partition function with the use of 
Stirling's formula (see Kittel and Shore 1965, Scharf 1972) result in 

F ~ (  P,  h )  -p-'JN-' ln(N/2 + 1). (5.2) 
From (5.2) and (2.14) an upper bound on the susceptibility follows which is much 
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closer to the asymptotic form (4.15). Equations (3.3) appear, in particular, in the 
study of the model with the use of the well known integral representation for an 
exponent of a quadratic form (see e.g. Kac 1968). 
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